INSTABILITY IN A GRANULAR BED FLUIDIZED
BY A GAS FLOW
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Stability in fluidization is considered in an approach in which the granular bed is considered as
a structureless element with a definite working response, and the boundary to the stability re-
gion in parameter space is examined.

Previous studies of stability in fluidized systems amount essentially to analysis of the purely hydro-
dynamic behavior of small perturbations in the porosity and other quantities that describe the homogeneous
fluidized state [1-8].  Such a state is always unstable, since any fluidized bed has perturbations that increase
with time, and the various layers in that respect differ only in their values for the characteristic rate of
growth of the perturbations, * If the rate of growth is small, the perturbations remain small even on emer-
gence at the upper boundary of the bed, and the structure of the bed does not apparently diifer from homo-
geneous, whereas at high rates of increase, which are characteristic particularly of fluidization by gases,
one gets essentially nonlinear interactions between the perturbations of various wavelengths and frequencies,
which result in the generation of finite-amplitude waves [9, 10], with the ultimate result being gas bubbles
and other discontinuities, the bed thus becoming nonu*formly fluidized.

However, in both cases the conclusions derived from such an analysis apply only to the internal structure
of the fluidized bed, and they have no relationship to the observed global behavior. In particular, these con-
clusions cannot be utilized directly to evaluate the behavior of macroscopic characteristics such as the effective
height of the fluidized bed, the overall pressure difference, and so on. The type of equipment and the working

* It follows from [7, 8] that the in{ernal pressure in the dispersed phase due to the random fluctuations of the
particles can sometimes (especially when the concentration of the dispersed phase is small) stabilize the uni-
form state and suppress small perturbations, However, no matter how effective such stabilization for dilute
suspensions, it is unimportant for realistic values of the porosity and other quantities commonly occurring
during fluidization,

Fig. 1. The equipment.
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Fig. 2. Unstable region in fluid-
ization in the (n, N) plane,

parameters may result in these characteristics being stable on average (neglecting possible random fluctua-
tions due to local nonuniformities within the bed) or else showing regular periodic pulsations due to some
global instability which, in general, is not related to instability in the internal structure of the bed itself.
Examples of such pulsations are ones seen in the pressure in beds fluidized by gases or even by liquids {11,
12], as well as the relaxation oscillations observed in granular beds [13, 14].

From the purely practical viewpoint, a study of stability in fluidization in the above sense is of no less
interest than the traditional stability analysis, examination of the conditions for nonuniform fluidization, and
so on, So far as we are aware, no study has previously been made of the stability in the bed depth, pressure
difference, and other such macroscopic characteristics, apart from isolated attempts to describe the dynamic
response to such quantities for a homogeneous fluidized bed to sudden changes in the fluidization conditions
[15, 16].

Figure 1 shows a schematic model that reflects the major features of real equipment, the basic param-
eter being the current height H of the bed, which serves to characterize the fluidization generally.

The gas is supplied at an initial pressure p* and enters the free space V, where the pressure is Py;
the total mass flow rate is q + qy. Part of the gas (flow rate q) passes through the gas distributor to the
granular bed and fluidizes it; the pressure differences in the distributor and in the bed are, respectively,
py—P and p——po. The treatment is simplified by assuming that the gas is ideal, while the pressure differences
in the supply system and in the distributor (grid) are linearly dependent on the corresponding flow rates, and
the pressure difference across the bed is small by comparison with the external pressure p’, which enables
us to neglect the variation in gas density over the height of the bed, It is clear that these assumptions are
not fundamental and correspond to the following relations:

Mp=p*—p, =k (g+q,), Ap=p,—p=rkyg, Ap=p—p°&p°,

RT o c M (1)

M T T Rr
Also, we assume that the bed is macroscopically homogeneous in that the density averaged over the cross
section is dependent only on the instantaneous value of H (i. e., on time), being independent of the position of
the section in the bed, This represents some degree of idealization for the passage of gas through the hed, but
it is reasonably close to the actual position for many fluidized beds of granular material. The ‘opposite as~
sumption would perhaps be that the granular bed moves as a whole in the fashion of a piston.

The basic equation for the behavior of a macroscopically homogeneous bed is put as
1
7mH+mg:A3p:p—p°,m=pr0, (2)

where a dot above a symbol represents differentiation with respect to time, This equation contains no term
for the friction at the wall, because the frictional stress at the wall is proportional to the pressure of the bed
on the wall, which vanishes when the bed is fluidized (stresses due to momentum transfer by fluctuating parti-
cles are comparatively small and therefore are neglected).
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Fig. 3. The unstable region in terms of the variables N
andv forn=1. '

Fig. 4. Establishment of: a) an ordered oscillatory state;
b) relaxation oscillations.

From (1) and (2) we have
1 . .
A _QmH+mg+(k1—|—k2)q—]—quu:/_\.p:.p*—po, @)

in which the righit side may be considered in the general case as some given function of time. It is clear that
to close (3) we need to express gy and q as functions »f H and derivatives of the latter. We assume that p’
is constant, to get from (1) and (2) together with the definition of qy that

: : d o
9= Vo, = Vpo= oV — (A + Agp) =CV(—’;—H+k2q) : @)

Then (3) may be closed by deriving a uniyue function, namely, the working characteristic q(H, H yees)
of the fluidized bed. We avoid discussing the details of the local structure in the bed insofar as this does not
affect the derivation of this characteristic, which is entirely reasonable here. A similar approach is widely
used in the theory of mechanical and elsctrical oscillations.

Of course, the form of this function is dependent on the type of fluidized bed; for definiteness, we
restrict consideration to the state of developed inhomogeneous fluidization on the basis that the assumptions
of the two-phase fluidization theory are applicable. That is, we assume that a proportion 6 of the total volume
is occupied by rising gas bubbles, which are virtually free from particles, while the rest of the volume is
filled by a compact phase in a state of minimum fluidization. W= calculate the mean volumetric gas flow
rate to the upper boundary of the bed and equate this to the gas flow from the distributor to get

H ’
where we have used an obvious representation for 6; note that the volumetric speed of the gas in the accelerated

compact phase is different from Q, but the difference is of minor importance if H « g, which is usually the
case,

Q=Qo+ H+6(Qb—Qo)1 §=

From (5) we get the desired working characteristic as

. —H
g=do+ 05 +0 LMo g, = pSQ, 0 = pS (@, (6)

which goes with (3) and (4) to close the system of equations for this system as regards the response to external
perturbations.T

t Note that (5) or (6) alone allows us to solve an extremely important independent problem, namely, the bed
expansion consequent ona given Q(t), whichprevicusly has been considered fully only for auniformly fluidized bed
[15, 16]. The solution takes a particularly simpl:form forthe case H—H, < H,. We assume that the speed of
thegas in the bubble phase is constant, in which case we have from (5) that

I - - . t .
O~ Ho+ (1@ —Hyoo (— 228 1) 4 fem—a o[- BT ¢ —9]as.
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A disadvantage of this model is that the mean gas speed in the bubble phase Qy, is taken as independent
of the degree of expansion of the bed, and thus of time; however, that assumption follows directly from the
assumption that the two-phase fluidization theory is applicable, and it would appear that the two assumptions
are comparable in justification. In the more general case, one should incorporate possible deviations from the
two-phase theory (see the discussion in [17]) and take Qp as a slowly varying function of time, For our
purpose it is sufficient to assume that Qp, and o in (6) are certain constant characteristics of a given bed.

We assume that Ap = const to get the following steady-state solution for H, and g« to (3), (4), and {6):

g H0=Qb—Qo H09
00— Gy + Gy Q—Qs

PSS

(M
Ap—mg

= S =S
gs = PSQ, PR

(it is clear that the existence condition for a steady state of fluidization is provided by the ineguality Ap > mg).

To consider the stability of the state of (7) we examine states deviating slightly from this: from (3)-(7)
we get for such states that

1 . N
L E (e + k)G —q,) - Vi, (—L m¥ + kg ) — 0,
2 2 @)

g=qy+pS{x+vx), x =H—H,, v=HH"(Qy— Q)
which gives us the following equation for the small oscillations:

2vpS (R, - k)

X4ax+ax tax=0, ag= Y
1

]

&)

Ry + ky + vV 0 = M+ 20k,k VS

a; = 208 =
1= mkcV 2 mhcV

This equation has undamped solutions, i.e., the state of (7) is unstable if the corresponding characteristic
equation has even one root with a positive real part, i.e., if aya, < ay; simple transformation converts this
condition to the following condition for the instability of the steady state of fluidization in the presence of small
perturbations:

(V)2 + 2acV + B <0,
og — 20Skiky (ky + ky) — vmk} - m(k, + ky) (10)
vpSki k3 ’ 2voSki k3

It is convenient to introduce here the dimensionless volume v of the free space and the dimensionless param-
eters N and n by means of

v=vck1V,N=ﬁS£,n:«£. (11)
vm ’ R,
Then (10) is put as
i v 1+n
1 A < 0. 12
Livy=v ‘E‘[l - f Nn] n + Nn2 (12)

It is readily seen that this condition is not satisfied, i,e., the steady state is stable for v very small
and for v large; however, it can be satisfied for a certain range in v if the equation L(v) = 0 has two real
positive roots. The latter occurs, as is readily shown, if N and n satisfy

14+n—

1
14+n Y3
) (13)

<—2 (
n
-The instability region in the (N, n) plane is shown by the hatching in Fig. 2; the equation for the boundary of
this region is :

1 ' ! (14)
n(l+n) 1420 +V T+2nF -1
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If (12) or (13) is met, the stationary fluidization state actually is unstable if v lies within the range (vi,
v,), where

R _4_ l4n T
Oe 2n [Nn‘ ! n}{lj—-_[l N [(Nn)'l—l-—n]2] } (15)

As an example, Fig. 3 (hatched region) shows the instability in the (N, v) plane, which is bounded by the
curves of (15) for n = 1. Such regions are readily constructed for other values of n, and these regions move
toward higher v as n increases, i.e., upward in Fig. 3.

These results allow us to examine the unstable region in relation to the various physical and other param-
eters; for instance, (7), (8), and (11) give '

w:zi(‘?b—%)z kS (16)
Py Qb'—Q* Q—Q

This shows directly that the unstable range (v;, v;) is independent of H; for any given n, and also that in-
stahbility sets in more readily as y/pp, S, and Q+ decrease. The effects of the coefficients k; and k, on the
stability are more complicated. For instance, increase in k, and k,, on the one hand, tends to stabilize the
process for given n and Ap, since there is a proportional increase in N, whereas, on the other hand, there
is a destabilizing effect, since there is a reduction in Qx, as defined by (7), and thus a corresponding fall in
N. Similarly, the critical volumes V; and V, for the cavity corresponding to the onset of instability are as
follows in terms of the parameters:

Ho Qb“Qo
V 2= 1,29 17
PPk (Qp— Qo) (Qh—'Q*) “ ("

which follows from (7), (8), and (11) via the vy, 2 of (15).

The increments of the oscillations and the frequencies of the growing perturbations are found as the real
and imaginary parts of the roots A of the characteristic equation corresponding to (9); we introduce the param-
eters of (11) to get from (9) that

3 ; 2 N =
(_A_) +.1+;1\/n (»_A_) TN 1+rz,vn (P_)Tl—{—n —o. (18)

v v % uN
This shows that the frequencies and increments are proportional to the v given by (8).

In conclusion, we note briefly some possible consequences of instability in the steady state; the linear
equations (8) and (9) cease to be suitable as the perturbations become larger, and one then has to use the
initial nonlinear system of (3), (4), and (6); the nonlinearity halts the growth of the perturbations when a cer-
tain state is reached, so a steady oscillation amplitude is set up, A preliminary analysis indicates that mild
oscillatory conditions arise on passing through the stability boundary in parameter space; i.e., the amplitude
increases monotonically from zero as the image point moves across the stability boundary into the unstable
region. In that case one gets an ordered oscillatory state, which is similar to the secondary flows encountered
in hydrodynamics, Figure 4a shows schematically how this state might be reached. The fluctuations in H
may exceed Hx—H, as the deviation from the critical state increases, and in that case the bed returns to the
immobile state after some time T, after the start and remains in that state for some time T, after which the
process repeats (Fig. 4b). The first of these states corresponds to almost harmonic oscillation, as has been
observed [11, 12], while the second relates to relaxation oscillations [13, 14]. Both states are of independent
-interest, but an examination of these falls outside the scope of this paper.

NOTATION

¢, quantity defined in (1); g, acceleration due to gravity; H, bed height; Hy, Hx, bed heights in immobile
and steady fluidized states, respectively; kq, k,, resistance coefficients of the gas supply system and dis-
tributor; m, bed mass per unit cross-sectional area; M, molecular weight; N, n,dimensionless parameters
in (11); p*, r’, pys P, pressures at the inlet, at the outlet, in a free gas cavity, and at the outlet of gas dis-
tributor; Q, gas flow rate; Q;, Q*, Qp, minimum fluidization speed, gas flow speed, in stationary fluidized
state, and mean gas velocity in bubble phase; q, gy, total mass flow rates.into bed and into free cavity; R,
gas constant; S, bed cross-sectional area; V, volume of cavity under distributing grid accessible to gas; v,
dimensionless volume in (11); %, deviation of bed height from constant value; 6, proportion of bubble phase by
volume in fluidized bed; v, parameter in (8); p»gas density; Py bulk density of immobile bed; v, coefficient
from (6).
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KINETIC EQUATIONS OF HIGH-INTENSITY HEAT
AND MASS TRANSFER

P, P. Lutsik UDC 6‘6.047.35

A system of basic kinetic equations of high-intensity heat and mass transfer in capillary-porous
bodies is obtained by averaging the equations of heat and mass transfer with variable coefficients.

The use of averaged relations between quantities obtained on the basis of the equations of heat and mass
transfer is a useful method of generalizing experimental data and developing engineering methods for the cal-
culation of heat- and mass-transfer processes. This "integral approach" was adopted in [1] to find the
dependence of the heat flow on the rate of drying and heating of a body, and was further developed in [2] and
elsewhere. It might be expected that an analogous approach would be just as useful in more general and more
complex problems.

In the present work, this approach is extended to the case of high-intensity heat and mass transfer, in
which filtrational mass transfer begins to play a significant role., This allows kinetic equations to be obtained
for the heat flow jq(7) and the mass flow of material leaving the body — the total flow jy, () and its filtra-
tional (molar) component j,(7). The problem is solved without any assumptions as to the constancy of the
coefficients of heat and mass transfer or the kinds of contact between the material and the surrounding medium.

Intensive heat and mass transfer in a capillary-porous body is described by a system of nonlinear equa-
tions [1, 3]:
oT er du

2L = avT) - — —/ 1
> v (agvT) o it (1)
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