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Stability in fluidization is  cons idered  in an approach in which the g ranu la r  bed is  cons idered  as 
a s t r u c t u r e l e s s  e l emen t  with a definite working response ,  and the boundary to the stabil i ty r e -  
gion in p a r a m e t e r  space  is  examined. 

P rev ious  studies of s tabi l i ty  in fluidized s y s t e m s  amount essen t ia l ly  to analys is  of the pure ly  hydro-  
dynamic behavior  of sma l l  pe r tu rba t ions  in the poros i ty  and other  quanti t ies  that desc r ibe  the homogeneous 
fluidized s tate  [1-8]. Such a s ta te  is  always unstable,  s ince any fluidized bed has pe r tu rba t ions  that i n c r ea se  
with t ime,  and the var ious  l aye r s  in that  r e s p e c t  differ  only in the i r  values  for  the c h a r a c t e r i s t i c  ra te  of 
growth of the per turba t ions .  * If  the ra te  of growth is  smal l ,  the pe r tu rba t ions  r ema in  smal l  even on e m e r -  
gence at the upper  boundary of the bed, and the s t ruc tu re  of the bed does not apparent ly  differ  f rom homo-  
geneous,  whereas  at high r a t e s  o f  i nc rease ,  which a re  cha r ac t e r i s t i c  pa r t i cu l a r ly  of fluidization by gases ,  
one ge t s  essen t ia l ly  nonl inear  in te rac t ions  between the pe r tu rba t ions  of var ious  wavelengths and f requencies ,  
which re su l t  in the genera t ion  of f in i te-ampl i tude  waves  [9, 10], with the ul t imate  r e su l t  being gas  bubbles 
and other  discontinuit ies ,  the bed thus becoming non'~u:-'~ormly fluidized. 

However ,  in both c a s e s  the conclusions der ived f rom such an analys is  apply only to the in ternal  s t ruc tu re  
of the fluidized bed, and they have no re la t ionship  to the obse rved  global  behavior.  In pa r t i cu la r ,  these  con- 
clusions cannot be ut i l ized d i rec t ly  to evaluate  the behavior  of m a c r o s c o p i c  c h a r a c t e r i s t i c s  such as the effect ive 
height of the fluidized bed, the overa l l  press~tre difference,  and so on. The type of equipment and the working 

* I t  follows f rom [7, 8] that  the in te rna l  p r e s s u r e  in the d i spe r sed  phase  due to the random fluctuations of the 
pa r t i c l e s  can s o m e t i m e s  (especia l ly  when the concentra t ion of the d i spe r sed  phase  is  small)  s tabi l ize  the uni- 
f o rm s ta te  and supp re s s  smal l  per turba t ions .  However ,  no m a t t e r  how effect ive such s tabi l izat ion for  dilute 
suspensions ,  i t  i s  un impor tant  for  r ea l i s t i c  values  of the poros i ty  and other  quanti t ies  commonly  occurr ing  
during fluidization. 

Fig. 1. The equipment.  
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Fig. 2. Unstable region in fluid- 
ization in the (n, N) plane. 

pa rame te r s  may resul t  in these cha rac te r i s t i c s  being stable on average (neglecting possible random fluctua- 
tions due to local nonuniformities within the bed) or  else showing regular  periodic pulsations due to some 
global instability which, in general ,  is not related to instability in the internal s t ruc ture  of the bed itself. 
Examples of such pulsations are  ones seen in the p re s su re  in beds fluidized by gases  or  even by liquids [11, 
12], as well as the relaxation oscil lat ions observed in granular  beds [13, 14]. 

F rom the purely prac t ica l  viewpoint, a study of stability in fluidization in the above sense is of no less 
in teres t  than the tradit ional  stability analysis,  examination of the conditions for nonuniform fluidization, and 
so on. So far  as we are aware, no study has previously been made of the stability in the bed depth, p re s su re  
difference,  and other such macroscop ic  charac te r i s t i c s ,  apart  f rom isolated attempts to descr ibe  the dynamic 
response  to such quantities for a homogeneous fluidized bed to sudden changes in the fluidization conditions 
[15, 16]. 

F igure  1 shows a schematic  model that ref lects  the major  features  of rea l  equipment, the basic p a r a m -  
e ter  being the cur ren t  height H of the bed, which se rves  to charac te r ize  the fluidization generally. 

The gas is supplied at an initial p r e s s u r e  p* and enters  the free space V, where the p re s su re  is Pv; 
the total mass  flow rate is q + qv. P a r t  of the gas (flow rate q) passes  through the gas dis t r ibutor  to the 
granular  bed and fluidizes it; the p r e s s u r e  differences in the dis t r ibutor  and in the bed are,  respectively,  
Pv--P and p_p0. The t rea tment  is simplified by assuming that the gas is ideal, while the p re s su re  differences 
in the supply sys tem and in the dis t r ibutor  (grid) are l inearly dependent on the corresponding flow rates ,  and 
the p re s su re  difference ac ros s  the bed is small  by compar ison  with the external p r e s s u r e  p0, which enables 
us to neglect  the variat ion in gas density over the height of the bed. It is c lear  that these assumptions are 
not fundamental and cor respond  to the following relations:  

AlP = P* - -  P~ = kl  (q -b q~), A2p = p~ - -  p = k2q, Aap = p - -  pO~ pO, 

RT p M ( 1 )  
p = p  - -  , c =  - - .  

M c R T  

Also, we assume that the bed is macroscopica l ly  homogeneous in that the densi ty averaged over the c ros s  
section is dependent only on the instantaneous value of H (i. e., on time), being independent of the position of 
the section in the bed. This represen ts  some degree of idealization for the passage of gas through the bed, but 
it is reasonably close to the actual position for many fluidized beds of granular  material .  The opposite as-  
sumption would perhaps be that the g ranu la r  bed moves  as a whole in the fashion of a piston. 

The basic equation for the behavior of a macroscopica l ly  homogeneous bed is put as 

1--rnl:] + m g  -- A~p = p __pO, m = philo, (2) 
2 

where a dot above a symbol represen t s  differentiation with respect  to time. This equation contains no t e rm 
for the fr ict ion at the wall, because the fr ict ional  s t r e s s  at the wall is proport ional  to the p re s su re  of the bed 
on the wall, which vanishes when the bed is fluidized ( s t resses  due to momentum t rans fe r  by fluctuating par t i -  
cles are  comparat ively  smal l  and therefore  are  neglected). 
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Fig. 3. The unstable region in t e r m s  of the var iables  N 
and v for  n = 1. 

Fig. 4. Establ ishment  of: a) an ordered  osci l la tory state; 
b) relaxation oscillations. 

F r o m  (1) and (2) we have 

mJq -l- mg -F (kl -F k2) q + kaq~ : Ap : p* - -  pO, (3) 
2 

in which the right side may be considered in the general  case  as some given function of time. It is c lear  that 
to close (3) we need to express  qv and q as functions :,f H and derivat ives of the latter. We assume that p0 
is constant,  to get f rom (1) and (2) together  with the definition of qv that 

qv = VPO = cVpv = cV - ~  (A,p -F AsP) = cV ~ H -F k,q �9 (4) 

Then (3) may be closed by deriving a unique function, namely, the working charac te r i s t i c  q(H, I:I , . . .  ) 
of the fluidized bed. We avoid discussing the details of the local s t ruc ture  in the bed insofar  as this does not 
affect the derivation of this charac te r i s t i c ,  which is entirely reasonable here. A s imi lar  approach is widely 
used in the theory of mechanical  and e lec t r ica l  oscillations. 

Of course ,  the form of this function is dependent on the type of fluidized bed; for  definiteness,  we 
r e s t r i c t  considerat ion to the state of developed inhomogeneous fiuidization on 'the basis  that  the assumptions 
of the two-phase fluidization theory are  applicable. That is, we assume that a proport ion 5 of the total volume 
is occupied by r is ing gas bubbles, which are  virtually f ree f rom par t ic les ,  while the res t  of the volume is 
filled by a compact  phase in a state of minimum fluidization. We calculate the mean volumetr ic  gas flow 
rate to the upper boundary of the bed and equate this to the gas flow from the dis t r ibutor  to get 

H - -  Ho (5) Q =Qo+ ft+6(Qb--Qo), 6 -  ~ , 

where we have used an obvious representa t ion for 5; note that the volumetr ic  speed of the gas in the accelera ted  
compact  phase is different f rom Q0, but the difference is of minor  importance if H << g, which is usually the 
case. 

F r o m  (5) we get  the des i red  working charac te r i s t i c  as 

H - - H ~  qo ~ pSQo, ~ = 9S(Qb--Qo),  (6) q -= qo -}- pSl:l --F ~ - ' - - H - - '  

which goes with (3) and (4) to close the sys tem of equations for this sys tem as regards  the response to external 

per turbat ions .?  

? Note that (5) or (6) alone allows us to solve an extremely important  independent problem, namely, the bed 
expansion consequent on a given Q (t), which previ(,us ly has been considered fully only for a uniformly fluidized bed 
[15, 16]. The solution takes a par t icu lar ly  simpl ~ f o r m  for  the case  H--H0 << H0. We assume that the speed of 
thegns  in the bubble phase is constant,  in which case we have f rom (5) that 

t 

, He . . He 
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A disadvantage of this model  is that the mean gas speed in the bubble phase Qb is taken as independent 
of the degree of expansion of the bed, and thus of t ime; however,  that assumption foUows direct ly f rom the 
assumption that the two-phase fluidization theory is applicable, and it would appear that the two assumptions 
are  comparable  in justification. In the more  genera l  case,  one should incorporate  possible deviations f rom the 
two-phase theory (see the discuss ion in [17]) and take Qb as a slowly varying function of t ime. For  our 
purpose it is sufficient to assume that Qb and ~ in (6) are  cer ta in  constant cha rac te r i s t i c s  of a given bed. 

We assume that Ap = const to get the following s teady-s ta te  solution for  H ,  and q ,  to (3), (4), and (6): 

H ,  = (I Ho = Q b - -  Q o Ho ' 

(~ - -  q ,  + qo q b  - -  Q ,  (7) 

q, = pSQ, - A p - -  mg 
k 1 + k~ 

(it is c lea r  that the existence condition for a steady state of fluidization is provided by the inequality Ap > mg). 

To consider  the stability of the state of (7) we examine states deviating slightly f rom this: f rom {3)-(7) 
we get for  such states that 

l m~" + (k I + k 2 ) ( q -  q,) + cVk I ( - - ~  m x ' +  k.~q ) = O, 
2 (8) 

q = q.  + oS (x + vx), x = H - -  H. ,  v = HoH7 2 (Qb-- Q0), 

which gives us the following equation for the small  oscil lations:  

"'x'+ a ~  + alx  + aox = O, a o =  2vpS (k t + k~) , 
mkicV (9) 

a 1 = 2pS kl + k2 + vktk~cV m + 2pklk2cVS 
mkle V ' a2 = mklc V 

This equation has undamped solutions, i .e . ,  the state of (7) is unstable if the corresponding charac te r i s t ic  
equation has even one root  with a positive real  part ,  i .e . ,  if aia 2 < a0; simple t ransformat ion  conver ts  this 
condition to the following condition for the instability of the steady state of fluidization in the presence  of small  
perturbations:  

(cV) 2 + 2acV + ~ < O, 

2~ 2pSklk2 (kl + k s ) -  vmk 2 , ~ =  m (k 1 + k2) (10) 
2vpSk~ k~ 2vpSk~ k 2 

It is convenient to introduce here  the dimensionless volume v of the free space and the dimensionless p a r a m -  
e te rs  N and n by means  of 

v = vcklV, N = ~,2pSk' n=.--.k" (ii) 
vm kl 

Then (10) is put as 

L ( v ) = v ~ +  l + n - - l ~  n + - - - - < 0 . N n  ~ (12) 

It is readily seen that this condition is not satisfied, i .e . ,  the steady state is stable for v very small  
and for v large;  however, it can be satisfied for a cer tain range in v if the equation L(v) = 0 has two rea l  
positive roots.  The lat ter  occurs ,  as is readily shown, if N and n satisfy 

�9 1 

l+o 1 V - -  N ~  < - -  2 ( 1 3 )  

The instability region in the (N, n) plane is shown by the hatching in Fig. 2; the equation for the boundary of 
this region is 

N = t 1 (14 )  

n(l + n )  1 -k- 2n + V  (1 + 2n)~ - -  1 
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If (12) or  (13) is  me t ,  the s ta t ionary  fluidization s tate  actually is  unstable if  v l ies within the range (vl, 
v2) , where  

[1 ]{[ ,+o ]+} 
v , , =   -l-n ,§ , 115) 

- -  N [ ( N n )  - 1 -  l - - n ]  2 

As an example ,  Fig. 3 (hatched region) shows the instabi l i ty  in the (N, v) plane,  which is  bounded by the 
cu rves  of (15) for  n = 1. Such reg ions  a r e  readi ly  cons t ruc ted  for  other  values  of n, and these  regions  move 
toward higher  v as n i nc r ea se s ,  i . e . ,  upward  in Fig. 3. 

These  r e su l t s  allow us to examine the unstable region in re la t ion  to the var ious  physica l  and other  p a r a m -  
e t e r s ;  f o r  instance,  (7), (8), and (11) give 

�9 N=2.o__p_(Qb__Qo ]2 kl S . (16) 
Pb I, Qb--Q* J Qb--Qo 

This shows d i rec t ly  that the unstable range  (vi, V2) is  independent of H0 for  any given n, and also that in- 
s tabi l i ty  se ts  in m o r e  readi ly  as P/Pb, S, and Q .  decrease .  The effects  of the coeff ic ients  k i and k 2 on the 
stabil i ty a re  m o r e  complicated.  F o r  instance,  i nc rea se  in k 1 and k2, on the one hand, tends to s tabi l ize  the 
p r o c e s s  for  given n and Ap, since there  is  a propor t iona l  i nc rea se  in N, whereas ,  on the other  hand, there  
is  a destabil izing effect,  since the re  is  a reduction in Q, ,  as defined by (7), and thus a cor responding  fall in 
N. Simi lar ly ,  the c r i t i ca l  volumes V i and V2 for  the cavity corresponding to the onset  of instabi l i ty a re  as 
follows in t e r m s  of the p a r a m e t e r s :  

~o (Qb-- Qo. ~ v,,~, (17) V~,2= 
ckl(Qb--Qo) [Qb--Q* / 

which follows f rom (7), (8), and (11) via the vt, 2 of (15L 

The inc remen t s  of the osci l la t ions  and the f requenc ies  of the growing per tu rba t ions  a re  found as the rea l  
and imag ina ry  pa r t s  of the roots  )\ of the cha r ac t e r i s t i c  equation cor responding  to (9); we introduce the p a r a m -  
e t e r s  of (11) to get f r o m  (9) that 

( ~ _ ) 3  , + v N n  / ~. "~- l + n + v n  ( + )  , + n  (18) 

This shows that the frequencies and increments are proportional to the v given by (~). 

In conclusion, we note briefly some possible consequences of instability in the steady state; the linear 
equations (8) and (9) cease to be suitable as the perturbations become larger, and one then has to use the 
initial nonlinear system of (3), (4), and (6); the nonlinearity halts the growth of the perturbations when a cer- 
tain state is reached, so a steady oscillation amplitude is set up. A preliminary analysis indicates that mild 
oscillatory conditions arise on passing through the stability boundary in parameter space; i.e., the amplitude 
increases monotonically from zero as the image point moves across the stability boundary into the unstable 
region. In that case one gets an ordered oscillatory state, which is similar to the secondary flows encountered 
in hydrodynamics. Figure 4a shows schematically how this state might be reached. The fluctuations in H 
may exceed H,--H 0 as the deviation from the critical state increases, and in that case the bed returns to the 
immobile state after some time T 2 after the start and remains in that state for some time Ti, after which the 
process repeats (Fig. 4b). The first of these states corresponds to almost harmonic oscillation, as has been 
observed [ii~ 12], while the second relates to relaxation oscillations [13, 14]. Both states are of independent 

�9 interest, but an examination of these falls outside the scope of this paper. 

N O T A T I O N  

c, quantity defined in (1); g, acce le ra t ion  due to gravi ty ;  H, bed height; H0, H*, bed heights in immobi le  
and s teady fluidized s ta tes ,  r espec t ive ly ;  ki, k2, r e s i s t ance  coeff icients  of the gas  supply sy s t em and d is -  
t r ibutor ;  m,  bed m a s s  pe r  unit c r o s s - s e c t i o n a l  a rea ;  M, m o l e c u l a r  weight; N, n, d imens ion less  p a r a m e t e r s  
in (11); p*, p 0  Pv'  p '  p r e s s u r e s  at the inlet, at  the outlet, in a f ree  gas  cavity,  and at the outlet of gas  d i s -  
t r ibutor ;  Q, gas  flow ra te ;  Q0, Q*, Qb, min imum fluidization speed,  gas  flow speed, in s ta t ionary  fluidized 
s tate ,  and mean  gas  veloci ty  in bubble phase;  q, qv, total  m a s s  flow ra tes . in to  bed and into f r ee  cavity;  R, 
gas  constant;  S, bed c r o s s - s e c t i o n a l  a rea ;  V, volume of cavi ty  under distr ibuting gr id  access ib le  to gas;  v, 
d imens ion less  volume in (11); x, deviation of bed height f rom constant  value; 6, p ropor t ion  of bubble phase  by 
volume in f luidized bed; u, p a r a m e t e r  in (8); p , g a s  density; Pb'  bulk density of immobi le  bed; o, coefficient  

from (6). 
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K I N E T I C  E Q U A T I O N S  O F  H I G H - I N T E N S I T Y  H E A T  

A N D  M A S S  T R A N S F E R  

P .  P .  L u t s i k  UDC 66.047.35 

A sys t em  of basic  kinetic equations of high-intensi ty  heat  and m a s s  t r a n s f e r  in cap i l l a ry -po rous  
bodies is  obtained by averaging the equations of heat and m a s s  t r a n s f e r  with var iab le  coefficients .  

The use of ave raged  re la t ions  between quanti t ies  obtained on the bas is  of the equations of heat and m a s s  
t r a n s f e r  is a useful  method of genera l iz ing  exper imen ta l  data and developing engineering methods for  the ca l -  
culation of heat-  and m a s s - t r a n s f e r  p r o c e s s e s .  This  " in tegra l  approach" was adopted in [1] to find the 
dependence of the heat flow on the r a t e  of drying and heating of a body, and was fu r the r  developed in [2] and 
e lsewhere .  It might  be expected that an analogous approach would be just  as useful  in m o r e  genera l  and m o r e  
complex p rob lems .  

In the p r e se n t  work, this approach  is  extended to the case  of high-intensi ty  heat  and m a s s  t r ans f e r ,  in 
which f i l t ra t ional  m a s s  t r a n s f e r  begins to play a significant  role.  This  allows kinetic equations to be obtained 
for  the heat flow jq(z) and the m a s s  flow of m a t e r i a l  leaving the body -- the total  flow jm(T) and i ts  f i l t r a -  
t ional  (molar)  component  jp(T). The p rob lem is solved without any assumpt ions  as to the constancy of the 
coeff ic ients  of heat and m a s s  t r a n s f e r  or  the kinds of contact  between the m a t e r i a l  and the surrounding medium.  

Intensive heat and m a s s  t r a n s f e r  in a c ap i l l a ry -po rous  body is desc r ibed  by a sy s t em of nonl inear  equa-  
t ions [1, 3]: 

O T  "er d u  
- -  = V ( a q v T )  + - -  - -  , (1) 
O-c cq d~ 
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